STUDY OF THE NUMERICAL INTEGRATION
RULES USING C-LANGUAGE

A Project Report
Submitted by

Under the guidanceof
G. Sowjanya M.Sc.,
Lecturer

Department of Mathematics

SGK GOVERNMENT DEGREE COLLEGE
VINUKONDA



SGK GOVERNMENT DEGREE COLLEGE
VINUKONDA

BONAFIDE CERTIFICATE

Certified that this project STUDY OF THE NUMERICAL
INTEGRATION RULES USING C-PROGRAM is the bonafide
work of GADDE ANUSRI (Y193099019), JEEDIMALLA
SIREESHA (Y193099020) and SHAIK HAFIJA (Y193099024)
who carried out the project work under my supervision.

Supervisor Principal



PROJECT APPROVAL SHEET

Following team has done the appropriate work related to the THE STUDY OF
NUMERICAL INTEGRATION RULES USING C-PROGRAM and is being submitted to

SGK GOVERNMENT DEGREE COLLEGE, VINUKONDA-522647.

Team:

GADDE ANUSRI (Y193099019)
J SIREESHA (Y 193099020)
SHAIK HAFIJA (Y193099024)
Supervisor:

External Examiner:

Date:

Place: SGK GOVERNMENT DEGREE COLLEGE, VINUKONDA-522647.



TABLE OF CONTENTS

CHAPTER 1: NEWTON-COTE’S QUADRATURE FORMULA

Introduction

Newton Cotes Quadrature Formula

CHAPTER 2: TRAPEZOIDAL RULE WITH C - PROGRAM
Trapezoidal Rule

C - program

CHAPTER 3: SIMPSON’S RULES WITH C - PROGRAMS
Simpson’s one-third Rule

C - program

Simpson’s three-eighth Rule

C - program

...................

...................

...................

...................

CHAPTER 4: BOOLE’S RULE AND WEDDLE’S RULE WITH C - PROGRAMS

Boole’s Rule
C - program
Weddle’s Rule

C - program

CONCLUSIONS
REFERENCES

...................

...................

10
13
17
19

23
25
29
31

34
35



CHAPTER 1
NEWTON-COTE’S QUADRATURE FORMULA

INTRODUCTION

To find the definite integral, usually we use the fundamental theorem of calculus, where
we have to apply the antiderivative techniques of integration. However, sometimes, it isn’t easy
to find the antiderivative of an integral, like in Scientific experiments, where the function has to
be determined from the observed readings. Therefore, numerical methods are used to

approximate the integral in such conditions.

b
We know that a definite integral of the form fa f(x)dx represents the area under the
curve y = f(x), enclosed between the limits x = a and x = b. This integration is possible only
if f(x) is explicitly given and if it is integrable. The problem of numerical integration can be stated

as follows:

Given aset of (n + 1) data points (x;, ¥:),i = 0,1,2, ..., n of the function y = f(x), where

f(x) is not known explicitly, it is required to evaluate fx" f(x)dx.
X0

The problem of numerical integration, like that of numerical differentiation is solved by

replacing f(x) with an interpolating polynomial P (x) and obtaining fx"P (x)dx which is

n xg M

. X
approximately taken as the value of [ f(x)dx. Numerical Integration is also known as
X0

Numerical Quadrature.



NEWTON-COTE’S QUADRATURE FORMULA

This is also known as General Quadrature formula and is the most popular
and widely used numerical integration formula. It forms the basis for a number of

numerical integration methods known as Newton-Cote’s methods.

Derivation of Newton-Cotes formula

Let the interval [a, b] be divided into n equal subintervals with interval of

differencing h suchthata = xp < x < xp < -+ -+ < X, = b. Then x,, = x¢ + nh.
Newton’s forward interpolation formula is

y(x) = y(xo +uh) = Pp(x)

=y +uy ot u(u—l)& o+ u(u—l).(u—Z)& . Foeee e e (1)

Now, instead of f(x), replace it by this interpolating polynomial.

fxnf(x)dx = fxn P (x)dx where P (x) is an interpolating polynomial of degree n.

X0 xg ™ n

_ fx0+nhP (x)dx

X0 n

__ (xotnh + u(u—1) uu—1(u—=2) doeee eee e dx
=, Yo l@’0+ 2!5]0-'_ 3! 5/0 ]



Since X, = Xo + uh, we have dx = h.dp and the integration limits changes from 0

to n. Therefore, the above integral becomes

o n uu—"1,2  u@u—D—=2),3
J fdx=h[ [y, +uldy,+ —2+—" y,+ 3

X0 0

Yo+ -ldu

= h + u?-1 uS—3u+2u + -ldu
(;ijo W0+2!510+ 3! 5]0 ]

n

u? WUt 2 w3 v 3
=huwy,+ Ay, + (g—PA Y, TGt A v, + ---]0

=h| 2 B n2 nt n3  n2

n 2 3
+— —__ —_— -
o Ayo+ (= A yo+ (G, + DA Yo

__2) Ay, ] (2)

This is called Newton-Cote’s Quadrature formula. From this general formula,

we get different integration formulae by puttingn = 1,2,3, -

Withn = 1, we get Trapezoidal rule
With n = 2, we get Simpson’s % rule
With n = 3, we get Simpson’s 35 rule
With n = 4, we get Boole's rule

Withn = 6, we get Weddle's rule

Note: The software used for c-program is Code Blocks.



CHAPTER 2
TRAPEZOIDAL RULE WITH C - PROGRAM

Trapezoidal Rule is one of the important integration rules. The name
trapezoidal is because when the area under the curve is evaluated, then the total
area is divided into small trapezoids instead of rectangles. This rule is used for
approximating the definite integrals where it uses the linear approximations of the

functions.

Here the function f(x) is approximated by a first-order polynomial P1(x)

which passes through two points.

Takingn = 1, in the General Quadrature formula, all differences higher than

the first order will become zero and thus we get

x1 x0+h 1 1 h
J fGdx=J  fl)dx=h[yo+54y0] = h[yo+ 51—yl = (o +y1)
X0 X0
Similarly,
x0+2h 1 1 h

[ feodx =

x1 xo0+h

f(x)dx = h[y1 + 8] =hly+ z(yz —y)] = 5()’1 + y2)

X3 x0+2h h
J fdx=[  fG)dx =31+

x2 xo0+h



Finally, [ fdx="@y +y)
x0+(n—1)h 2 n—1 n
a [ Fdx = [ F)dx + [ fF()dx + [ f()dx + - + f’““*("h ) F(x)dx
X0 X0 X1 X2 xo+(n—1)h

h h h
= (y +y)+_ @ +y)+-+ @ +y)
2 0 1 2 1 2 2 n—1 n

h
=_[+y)+2(y +y +y +y +-+y )]
> 0 ' n 1 2 3 74 n—1

NS

J nf(x)dx =5[@otyn) t2(y1ty2+y3+yat -+ Y1l

X0

OR

h
[(Sum of the First and Last Ordinates)

f 7 peodx =

X0
+2(Sum of the Remaining Ordinates)]

This is known as Trapezoidal Rule.

Geometrical Interpretation

Consider the points Po(xo, yo0), P1(x1, ¥1), P2(x2, y2), =+ **- , Pn(xn, yn). Suppose the
curve y = f(x) passing through the above points be approximated by the union of the line

segments joining (Po, P1), (P1, P2), (P2, P3), - , (Pn—1, Pn).

Geometrically, the curve y = f(x) is replaced by n straight line segments joining the
points Po(xo,y0) and Pi(x1,y1); Pi(x1,y1) and Pa(xz, y2); -+ Pn—1(xn-1,yn-1) and
Pn(xn, yn). The area bounded by the curve y = f(x), x — axis and the ordinates x = xo and x =

Xn is then approximately equal to the sum of the areas of the n trapeziums.



Though this method is very simple for calculation purposes of numerical integration, the
error in this case is significant. The accuracy of the result can be improved by increasing the

number of intervals or by decreasing the value of h.

11
Example Evaluate fo mdx by using Trapezoidal rule with six sub-intervals.
Solution Divide the interval [0,1] into six subintervals.
bma _1-0 _1
Here h = — = c

The values of x and y are tabulated as below:

2

ol w
o
| o

6

1 0.857142 | 0.75 | 0.66667 | 0.6 0.545454 | 0.5

~yo=1,y1 =0.8571,y, = 0.75,y3 = 0.6667,y4 = 0.6, y5s = 0.5454, y¢ = 0.5

By Trapezoidal Rule,

11 h
J ——dx = Ao +ye) + 2(y1 +y2 + y3 + ya + y5)]
ol+x 2
= 1_[(1 + 0.5) + 2(0.857142 + 0.75 + 0.666667 + 0.6 + 0.545454)]
12
= 0.694877
Analytical Solution: 11 dx=[log(1+ x)]:) = [n2 = 0.693147
0 1+x



TRAPEZOIDAL RULE C-PROGRAM

#include<stdio.h>
#include<math.h>

double f (double x)
{

return 1/ (1+x);

main ()
{
int n,i;

double a,b,h,x,sum=0, integral;

printf ("\nEnter the no. of sub-intervals ‘n’: ");
scanf ("%d", &n) ;

printf("\nEnter the lower limit ‘a’: "),'

scanf ("%$1f", &a) ;

printf ("\nEnter the upper limit ‘b’: ");
scanf ("%1f", &b) ;

h=(b-a) /n;
for (i=1;i<n;i++)
{
x=a+i*h;
sum=sum+f (x) ;
}
integral=(h/2)* (f (a)+f (b)+2*sum) ;

printf ("\nThe integral is: %$1f\n",integral);



The screeshot of the ¢ program for trapezoidal rule:

&% o & | =
File Edit View Search Project Build Debug Fortran wiSmith Tools Tools+ Plugins DoxyBlocks Seftings Help
feEd &3/ YRR QRG P %S 0 Db VBlipses s no|EE
¢ | <global> | fidouble x) : double vimaa> FBEBR
#vr< @S dekin]  Jeslémeih|olEA===lcooaalsCl[ Al
Heenagement Trapezoidal.c
“ Projects Files  Fsymbol * 5 )
) Workspace 2 :
i testing 3 double f(double x)
4 Numerical_Integration_rules g [T']{
o3 Sources 5 |  retarn 1/(1:x):
Trapezoidal.c 6 i
# int n,i;
10 double a,b,h,x,sum=0,integral;
11
12 printf("\nEnter the no. of sub-intervals 'n': "):
13 scanf ("&d" ]
14
1z printf(" e ¥4
16 scanf ("%,
17
18 printf ("\nEnter the upper limit 'b' : ");
18 scanf ("$1f",sb):
20
27 h=(b-a)/n:
22 for(i=1l;i<n;i++)
23 |H {
24 x=a+i*h;
25 sum=sum+f (x) ;
26 o }
27 integral=(h/2)* (f(a)+f(b)+2*sum);
28
29 printf("\nThe integral is: %1f\n",integral):
30 b
31 v
< > < >
C:\Users\bhadra\OneDrive\Desktop\Numerical_Integration_rules\Trapezoidal.c C/Ces Windows (CR+LF) WINDOWS-1252  Line6, Col 2, Pos 80 Insert Read/Write  default =

The screeshot of the output with mn=6,a=0,b=1which gives the
integral 0.694877, which matches exactly with the answer in the
above example:

the no. of sub-interwvals
the lower limit 'a’
Enter the upper limit 'b’

The integral is: 8.6

execution time




From the below output screenshots, we can conclude that the exact value of the
integral is 0.693147 which is obtained by increasing the number of sub-intervals.

~ the no. of sub-intervals "n': 188
~ the lower limit 'a" : B

er the upper limit

a8) execution time
to continue,

Enter the no. of sub-interval
Enter the lower limit

Enter the upper limit °

The integral is: @.693147

Process returned @ ( execution time ; 12
Press any key to «

Enter the no. of sub-interv:
:

Enter the lower limit ‘a

Enter the upper limit 'b’

execution time :




CHAPTER 3
SIMPSON’S RULES WITH C - PROGRAMS

We have Simpson’s £ —rule and Simpson’s 3 —rule.
3 8
. , 1
Simpson’s — —rule
3

In Simpson’s + —rule, the function f(x) is approximated by a second order
3

polynomial P2(x) which passes through three successive points.

Taking n = 2 in the the General Quadrature formula, by replacing the curve

n
y=fX) byE parabolas, all differences higher than the second order will become
zero and thus we get

[ P feodx = 7

X0 X0

+2h 1
fx)dx = 2h [yo + Ayo + gAzyo]

1
= 2h[yo + (y1 — y0) + g(yz — 2y1+ yo)]

h
= _(y+4y +y)
0 1 2

3

Similarly,

[ fGdx = 5 vz 4y + )

X2

10



[ fGdx = 3 (st ays + 30

X4

Xn h
[ fdx = 3 2 + 4yn-1+ yn)

Xn—2
Adding all these integrals, we get

X2 X4 X

§ " Godx = FGodx+ f

0

f)dx + | 6f(x)dx + ot B f(x)dx

0 e

2

h h h
= +4 +ty)+_( +4y +y)+--+_§ +4y +vy)

h
=" [y +y)+40@ +y ++y D420y +y ++y )]
3 0 n 1 3 n—1 2 4 n—2

xn h
[ fx)dx = 3 [(o+y,) + 4+ Y+ =+ ¥, ) +2(0, +y, + - +¥,,)]
X0

OR

h
3 [(Sum of the First and Last Ordinates)

[ fdx =

X0
+4(Sum of the 0Odd Ordinates) + 2(Sum of the remaining Even Ordinates)]

with the convention that y1, y3, ..., yn—1 are odd ordinates and yo, y2, Va4, ..., Yn—2, Yn are

even ordinates.

This is known as Simpsons 1— rule. The number of intervals in this rule must be even.
3

11



11 1

Example Evaluate fo mdx by using Simpson’s 3——rule with six sub-intervals.
Solution Divide the interval [0,1] into six subintervals.
e _10_1
Here h = — =7 =

The values of x and y are tabulated as below:

1 2

(o)W SN
o v

3
6

1 0.857142 | 0.75 | 0.66667 | 0.6 0.545454 | 0.5

~yo=1,y1 =0.857142,y, = 0.75,y3 = 0.6667,y4+ = 0.6, y5s = 0.545454, y¢ = 0.5

1
By Simpson’s 3 —rule,

11 h
= 3—[(yo +v6) + 4(y1 + y3 + y5) + 2(y2 + y4)]
0

1
= 8 [(1+0.5) +4(0.857142 + 0.666667 + 0.545454) + 2(0.75 + 0.6) ]

= 0.69316956

12



SIMPSON’S ONE-THIRD RULE C-PROGRAM

#include<stdio.h>
#include<math.h>

double f (double x)

{

return 1/ (1+x);

main ()

{

if

{

int n,1i;

double a@,b,h,x,sum=0, integral;

printf ("\nEnter the no. of sub-intervals ‘n’” (EVEN):

scanf ("%d", &n) ;
(n%2==0)

printf ("\nEnter the lower limit ‘a’: ");
scanf ("%$1f", &a) ;

printf ("\nEnter the upper limit ‘b’: ");
scanf ("%1f", &b) ;

h=(b-a) /n;

for (i=1l;i<n; i++)
{

x=a+i*h;

if (1i%2==0)

{

sum=sum+2*f (x) ;

13



else

{

sum=sum+4*f (x) ;

}
integral=(h/3) * (f (a)+f (b) +sum) ;

printf ("\nThe integral is: %1f\n",integral);

else

printf ("Oops!\n Simpons one-third rule is not applicable.\n

Please enter even number.\n");

}

= END OF THE PROGRAM =

[l
|
)
o
—
0]

The screeshots of the ¢ program for Simpson’s

in the CodeBlocks software:

I mpzans1_3 JeBlocks 20.03 (=1l =]
File Edit View Search Project Build Debug Fortran wxSmith Tools Tools+ Plugins DoxyBlocks Settings Help
IfEd &« WEREQAR G P> % D 0 Dby YBipEeav L s nB | BE

i <global>

e | EE R

‘g |EHESd e biD Jesdda i oEd===@/coa/ag[sC[_ -R%

WManagement x

mainc %
* Projects  Files  FSymbol * 5 2
) Workspace 2 B <ma >
P Mumerical Integration_rules 3 | double f(double x)
- Sources Co =E
B Num_int_Rules 5 return 1/ (i:x):
P Simpsons1_3 [ =3
@ Sources 7| main()
L] maine L =
£ int n,i;
10 double a,b,h,x, sum=0, integral;
11
12 printf("\nEnter the no. of sub-intervals 'n' (EVEN): ");
13 scant ("#d", &n) ;
14
15 if (nE2==0)
16 ==
17 printf ("\nEnter the lower limit 'a': ");
18 scanf("81E", &a);
15
20 printf("\nEnter the upper limit 'b': ");
21 scanf ("81£", &b)
22
23 h=(b-a) /n;
24
25 | for (i=1;1n;1++)
26 IO o
27
28
28 I
30 | Sum=sums2*f (x) ;
31 1 v
< > < >
CAU: OneDrive\Desktop\Simpsons1_\main.c e/ Windows (CR+LF)  WINDOWS-1252  Line 20, Col 36, Pos 339 Insert Read/Write  default =

14



File Edit
T
¢ <global> viiw=|NEBR

‘g3 didebip] 20 e=Lddas ik oOdd=E=EECcoa/alsCcli 00000 |BR

Wanagement x

Help
terw noEE

Sear

LI HEER ARG P B S O|pebug v

ch Project Build Debug Fortran wxSmith Tools Tools+ Plugins

main.c
* Projects Files  FSymbol” 14 A
) Workspace 15 if (ns 0)
- Numerical_Integration_rules 16 B
73 Sources 17 printf("\nEnter the lower limit 'a': ");
-Bf Num_Int_Rules 18 scanf ("$1f", £a) ;
P Simpsons1_3 18
=1 Sources 20 printf("\nEnter the upper limit 'b': ");
L [ 21 scanf ("$1L", &b} ;
22
23 h=(b-a) /n;
24
25 for(i=l;i<n;i++}
26 B «
x=a
J i o)
(5]
sum=sum+2* £ (x) ;
else
=
sum=sum+4* £ (x) ;
37 integral=(n/3)* (£ (a)+£ (b} +sum) ;
38 printe(” = integral is: 3)f\n",integral):
39 3 ]
40 else
a1 5 «
42 PTintf("Cops!\n SiMRERS one-third rule is not applicable.\n Please enter even number.\n"):
43 O
4 v
< > < >
Ci\Users\bhadra\OneDrive\Desktop\Simpsons1_3\main.c C/C++ Windows (CR+LF) WINDOWS-1252  Line 20, Col 36, Pos 339 Insert Read/Write  default =

The integral value with n=6, showing the output:

Enter the no. of sub-inter
Enter the lower limit

Enter the upper limit 'b’

The integral is: 8.6 5

15



Simpson’s é——rule is not applicable if m is not an even number:

Enter the no. of sub-intervals 'n" (EVEN): 5
Dops |

Simpons one-third rule is not applicable.
Please enter even number.

Process returned & (6x8) execution time : 4.615
Press any key to contlnue.

From the below output screenshots, we can conclude that the exact value of the
integral is 0.693147 which is obtained by increasing the number of sub-intervals.

Enter the no. of sub-interwvals 'n° (EVEN): 166
Enter the lower limit 'a': @

Enter the upper limit 'b': 1

The integral is: ©.693147

rocess returned 8 8) execution time : 8.
y key to continue.

Enter the no. of sub-intervals 'n°

Enter the lower limit "a’: @

Enter the upper limit 'b": 1

The integral is: @.693147

urned @ i) execution time : 5

16



. 3
Simpson’s 5 —rule

In Simpson’s 2 —rule, the function f(x) is approximated by a third order
8

polynomial P3(x) which passes through four successive points.

Taking n = 3 in the the General Quadrature formula, all differences higher

than the third order will become zero and thus we get

x3 3 3 1
[ f(x)dx =3h[yo + EAyO + ZAzyo + §A3y0]

X0

3 3 1
= 3h [yo +§(y1 — ¥0) +Z(yz — 2y1+ yo) +§(y3 —3y2+ 3y1 — yo)]

3h
=" +3y +3y +y)
g O 1 2 3

Similarly, f"éf(x)dx=ih§/ +3¥ +3 +y)
g 3 4 5 6

X3

Xn 3}1
[ f@)dx = — (s + 3ynz + 3yn1 + )

Xn—3
Adding all these integrals, we get

Xn x3 X

[ ode = f@dx+ [ f@dx o+ [ Fdx

0 0 n—

3h
=" [ ty )+3(y +y +y +y ++y )
g 0 n 1 "2 T4 s n—1

+2(y3 + y6 + -+ + yn-3)]

17



x 3h

[ fodx =

X0

?[()’0 + yn) + 3()’1 + Y, +y4 + Vs + et yn_1)
+2(y3+ ¥+ + ¥, 5]

This is known as Simpsons %— rule. The number of intervals in this rule must a multiple of 3.

11 3

Example Evaluate fo mdx by using Simpson’s 8——ru|e with six sub-intervals.
Solution Divide the interval [0,1] into six subintervals.
o _10_1
Here h = — = =3

The values of x and y are tabulated as below:

1 2

ol w
ol v

o)) I

1 0.857142 | 0.75 | 0.666667 | 0.6 0.545454 | 0.5

~yo=1,y1 =0.857142,y, = 0.75,y3 = 0.666667,ys = 0.6, ys = 0.545454,ys = 0.5

By Simpson’s 3 —rule, 1 1 dx =i[(}’ ty)+30 +y +y +y)+2(y)]
5 o & s 0 6 1 72 74 s 3

3
= [(1+ 0.5) + 3(0.857142 + 0.75 + 0.6 + 0.545454) + 2(0.666667)]

= 0.69319513

18



SIMPSON’S THREE-EIGHT RULE C-PROGRAM

#include<stdio.h>
#include<math.h>

double f (double x)
{

return 1/ (1+x);

main ()

{
int n,i;

double a@,b,h,x,sum=0, integral;

printf ("\nEnter the no. of sub-intervals ‘n’” (EVEN): ™);
scanf ("%d", &n) ;

if (n%$3==0)

{

printf ("\nEnter the lower limit ‘a’: ");
scanf ("%$1f", &a);

printf ("\nEnter the upper limit ‘b": ");
scanf ("%1f", &b) ;

h=(b-a) /n;

for (i=1;i<n;i++)
{

x=a+i*h;

if (1%$3==0)

{

sum=sum+2*f (x) ;

19



else

{

sum=sum+3*f (x) ;

}
integral=(3*h/8)* (f (a)+f (b) +sum) ;

printf ("\nThe integral is: %1f\n",integral);

else

printf ("Oops!\n Simpons three-eighth rule is

not

applicable.\n Please enter a number which is a multiple of 3.\n");

}

END OF THE PROGRAM

The screeshot of the ¢ program for Simpson’s one-third rule:

B = rrain.c [NUm_lnt_Rule < [=&l=]
File Edit View Search Project Build Debug Fortran wxSmith Tools Tools= Plugins DoxyBlocks Settings Help
FeE8 3 YRR ARG > S D D |pdu «BiipsEesLe Y no EED
¢ <global> ~ viea = | P BEBR
(@ m<|HBSid e b[iD oo Lamsih |0 MA =m=EE 000 & S CH R4
Management - | [——
* Projects  Files  FSymbol * 1 A
Workspace 2 ] ™a >
| B Mumerical_Integration_rules 3 | double f(double x)
-E8 Sources CE (=T
%8 Num_int_Rules 5 return 1/ (1+x);
=3 Sources 6 sl
| main.c 7 main()
: 8 (=t
£ int n,1i;
10 double a,b,h, x, sum=0, integral;
11
12 printf({"\nEnter the no. of sub-intervals 'nm' (MULTIBLE OF 3): ");
13 scanf ("3d", &n) ;
14
15 if (n¥2==0)
16 =
17 printf("\nEater the lower limit ‘a': ");
18 scanf ("t)L", &a);
1z
20 printf("\nEnter the upper limit 'b': ");
21 scanf ("S1£", &b ;
2z
23 n={b-a) /n;
24
25 for(i=l;i<n;i+s)
26 |5 1
217 x=a=ih;
28 if{183==0)
29 |0 ¢
30 | sum=sum:2* £ (x) ;
31 } v
< >l >
C:\Users\bhadra\OneDrive\Desktop\Num_Int_Rules\main.c i Windows (CR+LF) WINDOWS-1252  Line 14, Col 1, Pos 229 Insert Modified Read/Write default L
—

20



The integral value with n=6:

Enter the no. of sub-intervals 'n" (MULTIPFLE OF

Enter the lower limit 'a’": @

Enter the upper limit 'b": 1

The integral is:

Process returned @ (8x&) execution time
Press any key to continue.

Showing Simpson’s three-fourth rule is not applicabe if n is not
a multiple of 3:

Enter the no. of sub-interwvals "n® (MULTIPLE OF 3): 5
Dops!

Simpons three-eighth rule is not applicable.
Please enter a number which is a multiple of

Process returned @ (@x8) execution time : 8.898 s
Press any key to continue.

From the below output screenshots, we can conclude that
the exact wvalue of the integral is 0.693022 which 1is
obtained by increasing the number of sub-intervals, but
is not matching with the analytical solution. Thus
Simpson’s one-third rule is more accurate than the three-
fourth solution.

21



Enter the no. of sub-intervals 'n" (MULTIPLE OF
Enter the lower limit 'a': @
Enter the upper limit 'b': 1

The integral is: 8.6

Process returned @ ( ) execution time : 6.119 s
Press any key to continue.

Enter the no. of sub-intervals "n’ (MULTIPLE OF
Enter the lower limit ‘a': @
Enter the upper limit 'b': 1

The integral is: ©.693822

Process returned 8 (8x@) execution time
Press any key to continue.

Enter the no. of sub-intervals 'n® (MULTIPLE OF
Enter the lower limit "a': @

Enter the upper limit "b': 1

The integral is: 8.69

Process returned 8 (6xe) execution time :
Press any key to continue.

22




CHAPTER 4
BOOLE’S RULE AND WEDDLE’S RULE WITH C -
PROGRAMS

BOOLE’S RULE

Taking n = 4 in the the General Quadrature formula, all differences

higher than the fourth order will become zero and thus we get

2h

Xn
[ fx)dx T [(7y,+ 32y, + 12y, + 32y, + 7y,)
X0

+ (7y, + 32y + 12y, + 32y, 4+ 7yg) + -

+ (7yn_4 +32y, . +12y, , +32y, ,+ 7yn)]

This is known as Boole's rule. The number of intervals in this rule must be a multiple of 4.

11
Example Evaluate fo mdx by using Boole's rule with four sub-intervals.
Solution Divide the interval [0,1] into four subintervals.

b—a 1-0 1
Hereh—T— T 2

The values of x and y are tabulated as below:

1

S w

1
4

1 0.8 0.666667 | 0.5714286 | 0.5

23



~yo=1,y1 =0.8,y2 = 0.666667,y3 = 0.5714286,y4 = 0.5

By Boole’s rule,

| 2h
J [ = 17y +32y1 + 12y2 + 325 + 7y4]

0

= %[7(1) +32(0.8) + 12(0.666667) + 32(0.5714286) + 7(0.5)]

= 0.69317466

24



BOOLE’S RULE C-PROGRAM

#include<stdio.h>
#include<math.h>

double f (double x)
{

return 1/ (1+x);

main ()
{
int n,m,1i;

double a@,b,h,x,sum=0, integral;

printf ("\nEnter the no. of sub-intervals ‘n” (EVEN): ");
scanf ("%d", &n) ;

if (n%4==0)
{

printf ("\nEnter the lower limit ‘a’: ");

scanf ("%1f", &a) ;

printf ("\nEnter tne upper limit ‘b’: ™);
scanf ("%1£f", &b) ;

h=(b-a) /n;
m=n/4;

for (i=1;i<=m;i++)
{

sum=sum+7*f (a)+32*f (a+h)+12*f (a+2*h) +32*f (a+3*h) +7*f (a+4*h):;
a=a+4*h;

}
integral=(2*h/45) *sum;

25



printf ("\nThe integral is: %1f\n",integral) ;

else

printf ("Oops!\n BOOLE’S RULE is not applicable.\n Please

enter a number which is a multiple of 4.\n");

}

END OF THE PROGRAM

Screenshot of the c-program in CodeBlocks:

5] [Babtes rule] - Cod cls 20103 [ola =]
File Edit View Search Project Build Debug Fortran wxSmith Tools Teols+ Plugins DoxyBlocks Settings Help

P8 .3 ¥R ER(QR S > $ D 0D v PUEGIN LG DD

¢ <global> ~

(8B m<|EB|8id o BiD Ve 2> Lekie .
'ﬁém x e EEES T

| ¢ Projects Files  Fsymbol®]
|

x| PBEBR

B IEEE IEEEIECNE T T

*mainc X

| ) Workspace
| B Numerical_Integration_rules

3 8

2

3 double f (double x)
(= Sources 2

5

13

7

H{
T return 1/il=x}
¥

5]
| B MNum_int Rules
| . simpsons1_3

#include<stdio.h> '
#include<math.h>
main ()
=@ Sources =0
- | main.c Ol int nym,i;
| g Booles rule 10 double a,b, h,x, sum=0, integral
(3 Sources G | printf ("\nEnter the no. of sub-intervals 'n' (a multiple of 4): ")
] mainc 12 scanf ("&d", in)
13 if (n4==0)
L I =R
1s E printf("\nEnter the lower limit 'a': ")
16 scanf ("£1£", sa) ¢
Ll | printf ("\nEnter the upper limit 'b': ")
18 scanf ("£1£", &b) ¢
19 h=(b-a} /n
20 m=n/4
21 for (i=1;
22 |3
23 sum=sum+7* £ (a) +32% £ (a+h) +12° £ (a+2%h) +32° £ (a+3*h) +7* £ (a+4*h)
24 a=a+4'h
as }
286 integral=(2*h/45) “sum
27 printf ("\nThe integral is: ¥1£\n",integral):
28 = 1}
29 slse
30 @
31 T printf("Cops!\n BOOLE’S RULE is not applicable.\n Please enter a number which is a multiple of 4.\n")
32 }
33 } v
< > < >
C\Users\bhadra\OneDrive\Deskiop\Booles_rule\main.c MASM Assembly | Windows (CR+LF)  WINDOWS-1252  Line 18, Col 18, Pos 373 Insert Modified Read/Write default e

26



Screenshot of the output showing integral value 0.693148

with n=8:

Enter the no. of sub-intervals 'n' (a multiple of 4): 8

Enter the lower limit 'a': ©
Enter the upper limit 'b': 1
The integral is: ©.693148

Process returned @ (8x@) execution time
Press any key to continue.

Screenshot showing the integral is not applicable if n

is not a multiple of 4:

Enter the no. of sub-intervals "n' (a multiple of 4): 6
Dops!

BOOLE'S RULE is not applicable.

Please enter a number which is a multiple of 4.

Process returned & (8x8) execution time
Press any key to continue.

27



Screenshots of the output showing integral value 0.693417

which matches with the analytical solution with n=100:

Enter the no. of sub-intervals 'n' (a multiple of 4): 188
Enter the lower limit

Enter the upper limit

The integral is: ©.693147

Process returned @ (@8x8) execution time :
Press any key to continue.

Enter the no. of sub-intervals
Enter the lower limit
Enter the upper limit

The integral is: ©.693147

Process returned & (8x8) execution time : 4.971 s
Press any key to con

28



WEDDLE’S RULE

Taking n = 6 in the the General Quadrature formula, all differences

higher than the sixth order will become zero and thus we get

Xn 3h
[ f(x)dx = 7o [0 + 57, + ¥, + 675+ ¥, + 5¥5 + ¥)

X0
+ (Vg +5Y,+ Y5+ 69+ Y0 + 5V F V) + o

+ (yn—6 + 5yn—5+yn—4+6yn—3 +yn—2 + 5yn—1 +yn)]

This is known as Weddle's rule. The number of intervals in this rule must be a multiple of 6.

11
Example Evaluate fo mdx by using Boole's rule with six sub-intervals.

Solution Divide the interval [0,1] into six subintervals.

b—a _ 1-0 _ 1
Hereh—T— =

The values of x and y are tabulated as below:

1 2

ol w
o
| 1

1 0.857142 | 0.75 | 0.666667 | 0.6 0.545454 | 0.5

~yo=1,y1 =0.857142,y, = 0.75,y3 = 0.6667,y4+ = 0.6, y5s = 0.545454, y¢ = 0.5

By Weddle’s rule,

29



11 3h

fo 1?dx = 13[}/0 + 5y1 +y2 + 6y3 + ya+ 5ys + y6]

1
= [1+4 5(0.857142 + 0.75 + 6(0.666667) + 0.6 + 5(0.545454 + 0.5)]

= 0.693149

30



WEDDLE’S RULE C-PROGRAM

#include<stdio.h>
#include<math.h>

double f (double x)
{

return 1/ (1+x);

main ()
{
int n,m,1i;

double a,b,h,x,sum=0,integral;

printf ("\nEnter the no. of sub-intervals ‘n” (EVEN): ™)
scanf ("%d", &n) ;

if (n%6==0)

{
printf ("\nEnter the lower limit ‘a’: ");
scanf ("%1f", &a) ;

printf ("\nEnter the upper limit ‘b’: ");
scanf ("%$1f",&b) ;

h=(b-a) /n;
m=n/6;

for (i=1;i<=m; i++)
{

sum=sum+f (a)+5*f (a+h) +f (a+2*h) +6*f (a+3*h)+£ (at4d*h) +5*
f(a+5*h)+ f(a+6*h) ;

a=a+6*h;

31



integral=(3*h/10) *sum;

printf ("\nThe integral is: %1f\n",integral) ;

else

printf ("Oops!\n WEDDLE’S RULE is not applicable.\n Please
enter a number which is a multiple of 6.\n");

}

Screenshot of the c-program:

[ file= Rufe]= < 2003 [= & =]
File Eclit View Search Project Build Debug Fortran wxSmith Tools Tools= Plugins DoxyBlocks Settings Help
T8 eI XRR(ARIG P> $ S O by VEip g S no| B
| <global» = v‘ e PBEB R‘
(g |EEid e ki Jies Ladem i | CMEE=E8000 @& C VR &
Management X[ maine x
* Projects | Files Fsymbols [*l||[ 1 rardinih )
@ Workspace 2 cmath.h>
&4 Numerical_Integration_rules 3 double f(double x)
- Sources 4 t
a1 Num_lnt Rules s L return 1/ (1+x);
& i Simpsons1_3 6 ¥
&3 Sources 7 main()
-] maine 8 fH¢
-/ Booles_rule 3 int n,m,1;
| 588 Sources 10 double &, kb, h, X, Sum=0, integral;
1) mairuc 11 printf(™nEnter the no. of sub-intervals 'n' (a multipls of €): "):
& P Weddle's fue 12 _ scanf("sd”,sn);
. 13 if (ave==0)
L =T
o] (A 15 printf(™\nEnter the lower limit 'a': "j;
1é scanf ("$1£", za) ¢
17, printf("\nEnter the upper limit 'b':
18 scanf ("$1£", &b) ;
19 n=(b-a) /n;
20 men/E;
21 for (i=1;i<=m;i++)
22 IH ¢
23 sum=sum+f {a) +5*£{a+h) +£ (a+2*h) +6*£ (a+3*h) +£ (a+4*h) +5* f£la+5*h)+ £(a+6*h);
24 a=a+E&*h;
25 r }
26 integral=(3*h/10) *sum;
27 printf("™\nThe integral is: $1£\n", integral);
28 S
29 else
30 m {
31 printf("Cops!\n WEDDLE'S RULE is not applicable.\n Please enter a number which is a multiple of &.\n"); v
< >
Ci\Users\bhadra\OneDrive\Desktop\Weddle's_Rule\main.c leree+ Windows (CR+LF)  WINDOWS-1252  Line 25, Col 19, Pos 541 Insert Resd/Write  default =

32



Screenshot of the output showing the integral value 0.693147 which matches with

the analytical solution with just n = 6:

Enter the no. of sub-intervals 'n" (a multiple of 6): 12

Enter the lower limit

Enter the upper limit

The integral is: ©.693147

Process returned @ (6x®) execution time : 5.451 s
Press any key to continue.

Enter the no. of sub-intervals 'n' (a multiple of 6): 3
Enter the lower limit 'a': @
Enter the wpper limit 'b': 1

The integral is: 8.693147

Process returned @ (8x8) execution time : 4.984 s
Press any key to continue.

33



Screenshot of the output showing that the rule is not

applicable if n is not a multiple of 6:

Enter the no. of sub-intervals 'n' (a multiple of 6): 168
Dops !
WEDDLE

'S
Please en

RULE is not applicable.
ter a number which is a multiple of 6.
rocess returned @ (@xe) execution time : 5.135 s

y key to continue.

CONCLUSION

The value of the integral in Trapezoidal rule matches with the analytical solution
with the n value near to 500 and in case of , Simpson’s one-third rule and in Boole’s
rule it is obtained with with the n value near to 100 and with the Weddle’s rule it is
obtained with just n = 12. Thus Simpson’s one-third rule is more accurate than the

Trapezoidal rule.

Among all the rules, Weddle’s Rule is more accurate than any of the other

rules.

34



References

1. C-Language Tutorial videos by Srinivas, Naresh Technologies

https://youtube.com/playlist?list=PLVIQHNRLfIP8IGz60XwIV IgHgc72aXlh

2. Finite Differences and Numerical Analysis by H.C Saxena published by
S.Chand and Company, Pvt. Ltd., New Delhi.
3. Numercial Analysis by S.Ranganatham, MVSSN Prasad and V.Ramesh Babu,

S.Chand Publications.

35



